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Abstract. The Stamateris—Olivera—Figueira (SOF) cohesion function is based on the
behavior of the configurational internal energy, rather than on the repulsion-attraction
interpretation of cubic equations of state. It contains two adjustable parameters for each
component, and can take negative values at supercritical temperatures. In this paper, we
review the work done in development and implementation of the SOF function, and
present some new applications for nonpolar and polar fluid mixtures. We conclude that the
SOF cohesion function performs generally as well as, and in many cases better than, other
cohesion functions usually employed with cubic equations of state.
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1. Introduction

Despite considerable advances in the development of theoretically based equation of state (EOS) models,
engineering practice still relies heavily on simpler, semi-empirical cubic EOSs of the Van der Waals type,
especially 2P1T cubic EOSs, thus called because they contain two substance-specific (“2P”’) parameters, only
one of which (“1T”) depends on temperature [1]. These EOSs have the general form
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where a is the attraction parameter, and b is the covolume parameter. Both parameters are usually derived
from the critical properties of the fluid as
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In Equation (1), constants k; and &, define a particular “family” of 2P1T cubic EOSs, the best known
being the Van der Waals (VW, k; = k, = 0), Redlich-Kwong (RK, k; = 1, k, = 0), and Peng—Robinson (PR, %;
=2, k; = —1) lineages. Their values in turn determine the family-specific constants Q,. and Q, in Eq. (2). A
central element is the cohesion or alpha function (7,) in Equation (2), defined as
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A large variety of alpha functions have been proposed through the years. Van der Waals originally took a
as a constant [2], but later realized that a temperature dependence was required in order to improve EOS
performance [3]. Early attempts involved universal functions of reduced temperature, but the modern stage of
development was reached only after Wilson [4] and most notably Soave [5] showed that the alpha function
could be fitted to vapor pressure data of each pure fluid. The Wilson and Soave (S72) forms are, respectively
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The main drawback of this standard tuning of cubic EOS is that saturation data exist only up to the critical
temperature. Use of the EOS at supercritical conditions therefore involves an extrapolation that will largely
depend on the mathematical form of the alpha function. As an example, Figure 1(a) is a plot of [| of the RK
EOS for methane, computed from saturation data obtained from the NIST Webbook [6] and fitted with
Equations (4) and (5), evaluating m at the “omega temperature” Tr = 0.7, i.e. from the acentric factor []. Both
functions give very similar results in the range of experimental data, yet predict entirely different behaviors
above the critical temperature. Since Equation (4) gives a constant derivative d[1/dTr, [| decrease:
monotonically with increasing temperature until it eventually goes to negative values. By contrast, Equation
(5) precludes the possibility of negative (1, which reaches a minimum value (zero) and increases thereaf
with temperature. Also included in Figure 1(a) is the curve generated by the alpha function developed by Twu
et al. (TW) [7], which goes asymptotically to zero at infinite temperature,

a=TNM Yexp[L(1 — TVM] (6)
A traditional interpretation of Equation (1) is that the two terms on the rhs represent repulsive and
attractive contributions to fluid pressure, in that order. Based on this reading, it is frequently affirmed that «

should not take negative values, because they are physically meaningless. However, in van der Waals
generalized molecular theory, the equation of state is obtained only as [8-10]

P = NKT - —( ) )
TN T,N
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where V,is the “free volume” that excludes the hard-core (HC) region around each molecular center, where
other molecules cannot be present, and @ is the average longer-distance potential that contains not just
attraction effects, but also soft repulsions. Although the second term on the rhs of Equation (7) must vanish
identically at infinite temperature, it may be positive at high (but finite) temperatures, where P is slightly
greater than P because of soft repulsions [10]. More importantly, the assumptions that lead from Equation
(7) to Equation (1) are questionable at best. Even van der Waals himself [3] was aware of the deficiencies of
his “repulsion” term, which is based on the formula V; = V=b with constant excluded volume b and gives only
a first-order approximation to the equation of state of hard spheres [11]. General expressions are not available
either for the temperature and density dependencies of the “attraction” term [8, 9]. No theoretical significance
can therefore be ascribed to the parameters in Equation (1); the practical success of 2P1T cubic EOS hinges
on a fortunate compensation of errors, aided by empirical adjustments of the second term, even though the
hard-core term is more in need of improvement [11].

Experimental evidence strongly suggests that o can and should take negative values at supercritical
temperatures [3, 12—15]. Colina et al. [16] remarked that the analysis of sub- and supercritical cohesion data,
and in particular their extrapolation to infinite temperature, was made simpler by representing the ratio /7, as
a function of reduced reciprocal temperature or “coldness” 1/7,. These authors obtained supercritical values of
a by four different methods:

a) From saturation pressures, fitted and extrapolated with a quadratic extension of Equation (4) equivalent to

a proposal by Soave (S79) [17],

b) From pressures on the critical isochore,
¢) From second virial coefficients,

de
Bp & —<£=0,— Q. (8)

d) From Joule-Thomson inversion curves, by numerical solution of the first order ODE [18]



111 Iberoamerican Conference on Supercritical Fluids
Cartagena de Indias (Colombia), 2013

020 + ky) 49 & — Qp 02+ k0 +k,
02 + kle + k2 ' - Qac (9 - 1)2

da a
— c(e)F =d@) , cO) ¥ 9

dT,
where 8= v/b is a dimensionless volume.

Figure 1(b) is a plot of a/7, of the RK EOS computed for simple fluids modeled with the Lee-Kesler EOS
[19]. Results are shown for subcritical & computed from saturation pressures and supercritical ¢ obtained by
the above procedures. Three of the four methods predict negative « at high temperatures. The fact that the
various predictions differ from each other only serves to highlight the fallibility of the 2P1T cubic EOS,
which is unable to represent all fluid properties with a single formulation. In particular, the negative values
obtained from methods b), c¢) and d) do not arise from any “unphysical” postulated alpha function, but are the
direct result of applying the EOS model to different fluid properties.
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Figure 1. Subcritical and supercritical « for the RK EOS: (a) Extrapolated for methane with three different cohesion
functions; (b) Computed for simple fluids with four different methods.

2. Development of the SOF cohesion function

2.1 Formulation and justification

From Equation (1), an expression for the residual internal energy follows as

« dv
res —_ _ T 10
W = —a fi( r)fv A TEI TR (10)
with S defined as
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Although Equation (10) derives from Equation (1), there is reason to expect that it may be more successful
as a model of the configurational energy of fluids than Equation (1) is as a model of pressure. To start with,
the same Equation (10) is obtained if the first term in Equation (1) is replaced by any other function of
volume (improving the van der Waals repulsion term, e.g. with a density-dependent b), provided that the
temperature dependence is maintained to comply with the ideal gas limit. Furthermore, from molecular theory,
the residual energy is associated to soft repulsion and attraction effects, which we have seen is the proper
interpretation of the alpha function. Some interesting conclusions may then be obtained. Since the integral in
Eq. (10) is positive for all physically meaningful volumes v > b, and the residual internal energy is expected
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to be negative (because energy must be expended to draw the fluid molecules apart and reach the ideal gas
state, hence the alternative name “cohesive energy” given to this residual property), and go to zero at infinite
temperature (because only hard-core repulsions remain active in this limit), it follows that £ must be positive
definite,

f=>0 , limpB=0 (12)
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Thus, the most that can be concluded about the alpha function is that /7, is an increasing function of 1/7,.
Only a constant ¢, identical therefore to £, would be subject to the nonnegativity condition, but of course both
would equal unity as required by Equation (3). The constraint @ > 0 might be valid for the original van der
Waals EOS, but ceases to be mandatory once a is made temperature dependent.

We call S the cohesive energy or beta function, and consider it as a more fundamental function than .
From its definition, it seems reasonable to express it as a function of reciprocal reduced temperature. The SOF
cohesion function [20, 21] is based on the two-parameter ansatz

m
ﬁ = Trn_z (13)
which, by integration with the boundary condition of Equation (3), leads to

o1+ D (1 1) (14)
T, = n-—1\Tp1

2.2 Pure-component parameters

Using saturation pressure data generated from the DIPPR database [22], optimized values of m and n for
use with the VW, RK and PR EOSs were obtained for 846 fluids [21]. Parameter tables are available from the
authors. If the above molecular considerations are valid, we should expect from Equation (12) that m > 0 and
n > 2, but we must stress that the optimization was free from any such constraints. We present in Figure 3 a
graphical summary of the parameters obtained for the RK and PR EOSs; results for VW are entirely similar.
We find in effect that m > 0 for all fluids, and » > 2 in about 97% of cases. The exceptions correspond to
nearly the same substances for the three EOSs, including quantum gases, certain self-associating compounds,
glycols and a few other polyfunctional compounds. It is possible that a more complex beta function is
required for these compounds. In all cases, however, we see that n > 1 showing that ' is at least finite at
zero coldness. From Equation (14), the infinite temperature limit of /7, will be negative if m > n — 1, which
is the case for virtually all compounds, with isolated exceptions that appear in Figure 3 as points above the
diagonal linem =n— 1.

Unlike the single adjustable coefficient in one-parameter cohesion functions such as Equations (4) and (5),
the two SOF parameters m and n cannot be computed from a single saturation data point, and should not be
expected to depend only on acentric factor. An extended corresponding states correlation was developed using
critical compressibility factor Z, as fourth parameter in addition to @[21, 23],

m=go+91Zc + gw (15)
0.7t " -1 fot+ fiw
g 16
n—1 r m ( )
6
n= 2 ngrk @an
k=0

Coefficients for these formulas are given in [21, 23].
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Figure 2. SOF parameters for 846 fluids. The diagonal line corresponds to m =n — 1.

2.3 Extension to mixtures

Equation (1) can be extended to mixtures by making a and b functions of composition according to the
classical van der Waals one-fluid mixing rules,

am = Z Z x,'xjaij s bm = Z z Xinbij (18)
i J i J

where a;;, b;; are the pure-component parameters, and a;, b; (i # j) are the cross coefficients, traditionally
estimated from the combining rules

a; = (1— kij)(aiiajj)l/z (19)
bij = (bi + bj;)/2 (20)

where k;; is a binary interaction parameter (BIP). Clearly, the geometric-mean or Berthelot combining rule for
a;, Equation (19), cannot be used if (only) one of the pure-component parameters is negative. Although this
has been held as another reason for the unacceptability of negative cohesion parameters [15], the argument
can be easily reverted. Theoretical support for Equation (19) is rather tenuous, drawn from the London theory
of dispersive forces, where intermolecular cross-attractions between two spherical, nonpolar molecules with
similar ionization potentials can be approximated by the geometric-mean average [24]. But if parameter a in
Equation (1) does not represent purely attractive forces, Equation (19) ceases to be adequate as a combining
rule, as proved by the mere fact that a BIP is needed in practice to compensate for deviations from the
theoretical behavior. Actually, there should be no need for any combining rule, because if the BIP must be
obtained from experimental data on the binary i-j system, the same data can perfectly well be used to find a;
directly, rather than k;. Aside from this pragmatic approach, it is fairly straightforward to devise variants of
Equation (19) consistent with the possibility of negative a. Noting first that it is no longer possible to work
with reduced temperatures, we write, from Equations (3), (11) and (13) for each component,

d(a/T) _aml™? M J—— 21)
- (o} c

d/ry " %P T T2 Tz

The mixing/combining rules are now applied to obtain the derivative for the mixture,
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where the double subscript denotes pure component parameters. Integration from 1/7'= 0 yields

am am

oo (= +ZZx,x]( — (23)

with

1/2 n; + n;
M;; =(1- kl])(MLL 'j) nyj = : (24)
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Since m > 0 (hence M > 0) for all fluids studied, these combination rules can be applied without problem.
It would be tempting to set the infinite-temperature limit (a,,/T), in Equation (23) to zero, but Equation (14)
shows that this does not vanish for the pure fluids. Rather, it has the value

Ay Qi My
( T ) - Tci (1 ng — 1) (25)
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and would be zero only if the optimal parameters had fallen on the diagonal line in Figure 3, but then of
course the cohesion function would have been prevented from taking negative values. The difference between
a/T and the above limiting value,

Qi (A M;;
T ( T )w " (ny — )Tt (26)

can be interpreted as a corrected attraction parameter that discounts the repulsive contributions missed by the

van der Waals repulsion term. This opens up a second way to generate the combining rule. Since the “excess”
a/T in Equation (26) is always positive, the mixing/combining rules can be applied as

T ()= Y a3 (][5 (L) @

giving

am am Z Z Mij

_— = — + XX 28
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with Mj;, n; defined in Equation (24). There is no substantial difference between Equations (23) and (28). A

prescription must be found in any case for (a,,/T)., which should be a function of composition that reduces to
Equation (25) for the pure components. If this in fact represents a correction for repulsion effects, an
arithmetic-mean combining rule might be appropriate, e.g.

ITE S CRCH @

or we might keep the geometric mean combining rule if the pure-component limits are all negative,

Z Z xixj (1 — U)[ a" a” ]1/2 (30)
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In both cases, new BIPs appear that might give added flexibility to Equations (23) and (28). Yet another
possibility would be to dispense with combining rules altogether, and adjust the cross parameters at infinite
temperature directly from experimental data, as already mentioned. These and other proposals are of course
open to study, but the main point is that it is the beta function, not alpha, that truly represents cohesive energy,
and should be the target of the mixing/combining rules. Finally, it must be remarked that the fact that
Equation (14) allows for negative o does not necessarily mean that such values will arise in every situation.
As shown in Figure 1, the alpha function crosses the zero axis at relatively high reduced temperatures. Heavy
substances, or light fluids at moderate supercritical conditions, will exhibit positive a and Equation (19) can
be still applied, as in several of the applications described below.

3. Applications of the SOF cohesion function

3.1 Saturation properties of pure fluids

Poling et al. [25] included the VW-SOF EOS in their test of the capabilities of several cubic EOSs and
cohesion functions to predict saturated volumes, residual properties and fugacities of propane at two specified
conditions. Unfortunately, these authors inadvertently used an incorrect form of the SOF function, omitting
the 7, denominator in the lhs of Equation (14). This of course gave worse results than other cubic models, so
inferior in fact that it is remarkable that the authors did not realize that something was amiss about their
computations. When the calculations are redone with the correct version of Equation (14), the VW-, RK- and
PR-SOF models give results as good as, or better than, most other EOSs included in the original comparison
[21].

We show in Table 1 the average absolute deviation (AAD) of saturation pressures predicted by Equation
(14) and three other two-parameter alpha functions proposed by Soave (S79) [17], Gibbons and Laughton
(GL) [26], and Stryjek and Vera (SV) [27]. Parameters for these functions were obtained in all cases with the
same optimization procedure and for the same set of 846 fluids [28-30]. All four functions are seen to give
very similar deviations, with perhaps just a slight edge in favor of Equation (14). A limited comparison using
a subset of 56 fluids of interest in petroleum refining (light gases, paraftins up to C20, olefins and aromatics)
[31] has also shown that these functions predict enthalpies of vaporization with comparable AADs ranging
from 3.4% with Equation (14) to 3.6% with GL. Thus, we may conclude that properly adjusted two-parameter
cohesion functions perform essentially the same in predicting fluid properties at saturation conditions in the
subcritical region.

Table 1. Percent AAD of saturation pressures of pure fluids
predicted with two-parameter cohesion functions

EOS S79 GL SV SOF
Vw 291 2.55 2.57 2.33
RK 2.94 2.52 2.55 2.33
PR 3.12 2.38 247 2.40

3.2 Hydrocarbon mixtures with H,S and CO,

Barrios et al. [32, 33] studied the vapor-liquid equilibrium (VLE) of binary systems of H,S, CO, and
paraffinic hydrocarbons up to C10. Isothermal P-x-y data were collected from the literature for 23
hydrocarbon binaries, 12 mixtures with CO,, 7 mixtures with H,S, and the system CO,/H,S. Optimal BIPs
were computed by minimizing the fugacity objective function proposed by Paunovi¢ et al. [34]. The VW, RK
and PR EOSs were combined with the S72, S79, GL, SV, TW and SOF functions, using Equation (19) in all
cases, because negative values of o did not arise in the range of experimental temperatures. BIPs for
hydrocarbon—hydrocarbon interactions could be set to zero without significant loss of precision (AADs less
than 2.0% and 0.3% for pressures and vapor compositions, respectively), but nonzero values were definitely
required for systems with either H,S or CO,. BIPs were found in general to increase with temperature,
strongly so near the critical temperature of the heavier component. They did not change greatly with the
choice of cohesion function for a given EOS, indicating once again that all models give similarly good
representation of saturation properties. Tables of optimal BIPs are available from the authors. A
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corresponding-states correlation was developed for BIPs in terms of reduced temperature and acentric factor
of the heavier component (),

, kf'.(w)
kij = ku(a)]) —_ |1U——T| (31)
r]

with coefficients given in [33]. There is virtually no deterioration in the VLE results using the correlation
instead of the optimal BIPs. Figure 3 presents two examples of predicted phase diagrams.
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Figure 3. VLE predicted using optimal (solid lines) and correlated (dashed lines) BIPs.

We have used the above optimal BIPs and generalized correlations to predict VLE of 12 ternary systems
(9 containing only hydrocarbons, 2 containing CO,, and one containing both CO, and H,S) for which
experimental data were available in the literature. Two five-component and one six-component hydrocarbon
mixtures were also included. Pressure AADs range from about 4% to 6% using the optimal BIPs, increasing
to about 8% when the correlations are used. The lowest deviation is obtained with PR-S79. Composition
AADs lie between about 6.0% and 6.5% for all models. Equation (14) places first or second best, with very
little difference between results from either optimal or correlated BIPs.

3.3 Distillation curves of petroleum fractions

From Equations (15)—(17), characteristic parameters m and n can be predicted for substances not in the
database, and in particular for ill-defined fluids such as petroleum fractions, if the basic physical data (critical
properties and acentric factor) are available or can be estimated by suitable methods. Using the various
EOS/alpha function combinations, we have computed distillation curves of 12 light cuts, with API gravities
from 31.5 to 74.2, for which data were found in the literature [35]. The experimental ASTM D86 curves were
converted into true boiling point (TBP) curves using the correlations of Daubert [36]. Pseudo-components
were defined at 10 K intervals, with normal boiling points (NBP) at half interval and specific gravities
obtained from the Watson factor of the cut. Critical properties and acentric factor of each pseudo-component
were then estimated using correlations by Twu [37]. With the mixture thus characterized, the ASTM D86
distillation was simulated as a sequence of flash separations. We observed however that the assumption of
zero BIP between hydrocarbon pairs resulted in large errors, especially at the light end, i.e. at the distillation
onset. It was necessary therefore to estimate BIPs for the pseudo-component pairs, and this was done by least-
squares minimization of the temperature deviations. We found that BIPs were related to the NBPs in the form
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n

ki =ky* NBP - NBP,

(32)

with coefficients given in Table 2. Figure 4(a) shows the simulated distillation curves for Geddes Cut 4 using
PR-SOF with zero and non-zero BIPs. The noticeable improvement in the predictions when BIPs are
introduced contradicts the widespread assumption of zero BIPs for these mixtures, e.g. in process simulators.
A global decrease in deviations was obtained, roughly from 5 K to 1.6 K, very similar for all combinations as
shown in the bar chart of Figure 4(b), suggesting that selection of the EOS and cohesion function may not be
crucial when the BIPs are fitted to experimental data.

Table 2. Coefficients of Equation (32) for Geddes [35] oil cuts

N°  Cut type ky ky N°  Cut type ky ki
1 Naphtha -0.062 1.449 7  Catalytic naphtha -0.003 0.370
2 VM & P naphtha -0.221 3.881 8  Catalytic naphtha -0.060 1.453
3 White gasoline -0.216 4.010 9 Catalytic naphtha -0.060 1.697
4  Naphtha -0.153 2.589 10 Light naphtha -0.008 0.323
5 Unstripped naphtha -0.117 2.097 11 Light naphtha -0.007 0.690
6  Unstripped naphtha -0.152 2.490 12 Heavy naphtha -0.040 1.096

3.4 Joule-Thomson inversion curves

Joule-Thomson inversion curves (JTIC) provide an extremely sensitive test of the volume and temperature
dependencies of any EOS. Equation (9) can be solved for inversion temperatures by assigning values to the
dimensionless volume @, which runs from 1 to infinity. Inversion pressures are then obtained by substitution
in Equation (1). We note from Equations (11), (13) and (14) that

dae  a—p

a
aT T =(2—n)i+(n—1—m) (33)

hence Equation (9) has a direct solution for o/7,, with 7, following from Equation (14) as

/(1-n)
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Figure 4. Prediction of distillation curves of ligh oil cuts
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We remark that Equation (34) is single-valued, i.e. the SOF function avoids the pitfalls of other well-
known cohesion functions that predict more than one inversion curve [38]. An important characteristic point
is the terminus of the JTIC in the high-temperature, zero-pressure limit where the fluid approaches ideal gas
behavior. Letting 8 > o, ¢ 2 2, d > —Q,/Q,. we get the maximum inversion temperature as

1/(1-n)

max _ n—l(Qb_ _ )]
rinv T [1 + mn \Qg. m—1 (35)

a result that can also be established from Equation (8) by imposing the condition

d(Bg/T,) at+p_ W
d(1/T,) — T, Quc

(36)

Figure 5 is a plot of inversion curves predicted for argon using the VW, RK and PR EOSs with the SOF
function. Maximum inversion temperatures are listed in Table 3. Also included for comparison are values
obtained from the corresponding-states correlation developed for simple fluids by Gunn et al. [39]. It can be
seen that none of these models reproduces the empirical data satisfactorily, as could be expected from Figure
2, where alpha values that match a JTIC differ from those obtained by extrapolation of a subcritical function.
In particular, maximum inversion temperatures, and also peak inversion pressures, decrease with increasing &,
(0.307... for PR, 0.333... for RK, 0.375 for VW). As discussed in [40], the shape of the predicted JTIC can be
adjusted by performing the transformation v := v + ¢ where ¢ is the volume translation parameter. As an
example, we show in Figure 5 that PR-SOF with ¢ = —0.009(RT,/P.) obtained by inspection gives greatly
improved results. Similar attempts with the VW and RK EOS, however, are not successful, so that this
procedure appears to be of limited utility.

Table 3. Maximum inversion temperatures for argon
Gunn et al. [36] VW-SOF RK-SOF PR-SOF PR-SOF-tr

5.075 3.738 4.383 5.484 5.234

3.5 Equilibrium of hydrocarbon systems with hydrogen

Special challenges are faced when modelling systems containing hydrogen. The cohesion parameter of this
quantum fluid exhibits a maximum at an intermediate subcritical temperature, which cannot be captured with
traditional one-parameter functions such as S72.
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Figure 5. Predicted JTICs for argon Figure 6. Subcritical & of hydrogen
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As shown in Figure 6, the SOF function does an excellent job of reproducing the entire subcritical curve, but
of course this is also true of other two-parameter functions such as GL and TW. Secondly, given the very low
critical temperature of H,, there is a very certain possibility that o may become negative at temperatures
within the range of practical applications. Preliminary calculations based on critical isochore data generated
from the reference equation of Leachman et al. [41] suggest that this may happen somewhere between 150
and 250 K, depending on the EOS. Even if negative values are not attained, the cohesion function will need to
be extrapolated well past the critical temperature, and its correct behavior is crucially important.

Bastida et al. [42, 43] studied the VLE of 15 binary mixtures of H, with paraffins, olefins and aromatics,
and also with CO, CO, and Ar. The mixing/combining rules of Equations (23) and (30) were used in three
different forms, denoted as (SOF-1C) /; = 0 and constant k;, (SOF-2C) /; # 0 and constant k;, and (SOF-1T) /;
= 0 and temperature-dependent k;. Optimal BIPs were obtained by minimization of the implicit objective
function proposed by Englezos et al. [44]. The pressure (P) and vapor composition (Y) AADs were compared
with predictions obtained using BIP correlations developed by Huron et al. [45] and Bosse et al. [46] for the
RK and PR EOSs. We summarize the results in Table 4, and present two examples of predicted phase
diagrams in Figure 7. It can be seen that the SOF cohesion function, with one temperature-dependent BIP,
gives generally better predictions than the other SOF options, and also than other methods recommended in
the literature.

Table 4. AADs in the prediction of VLE of hydrogen-containing binary systems

VW RK PR
AAD(P) AAD(Y) AAD(p) AAD(Y) AAD(P) AAD(Y)
SOF-1C 14.6 2.78 12.4 2.79 14.4 2.29
SOF-2C 30.8 4.62 23.7 3.96 14.7 2.69
SOF-1T 10.5 1.69 11.8 3.23 9.35 1.98
Ref. [45] - - 19.8 4.12 18.8 3.88
Ref. [46] - - 34.7 431 21.4 4.28
1,4E+05 0 Exptal 5,0E+04 ’, ‘
—e— Ref.[45] | ! 4,0E+04 | + S % L
1,OE+05 | : | ./. \
2 g 05+04 | / i = 30EH04 | A g0 D
= ’ : A
% 6,0E+04 ’ g 2.0E+04 | ;
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(a) H, — propane at 310.92 K (b)H, - CO,at 77.3 K

Figure 7. Predicted VLE of hydrogen mixtures with BIPs from (black lines) this work, (blue lines) [45]

4. Conclusions

Space limitations prevent us from extending this account of recent and ongoing applications of the SOF
cohesion function, which also include the correlation of thermodynamic properties of the binary system
ammonia-water, for use in the analysis and optimization of refrigeration and power cycles [47—49], and the
correlation and prediction of fluid-fluid equilibria of alkyl- and fluoroalkyl-dichlorobenzoates with
supercritical carbon dioxide, for use in the selection and design of intermediate compounds in polymer
synthesis [50-52]. We believe nonetheless that the above examples provide ample justification for our
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conclusion that the SOF cohesion function is a valuable addition to the field of cubic equations of state, and
can hold its own against similar tools in current engineering use.
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